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Abstract 

It is often held that experimental 
randomization is irrelevant to a Bayesi- 
an since he conditions on all the ob- 
served values of the data in any case. 
By considering randomization as a special 
process for creating missing data that 
allow inferences for causality, it can 
shown that randomization is as important 
to a Bayesian as to a frequentist. A 
subjective Bayesian cannot ignore the 
method used to assign treatments unless 
it is a known (possibly probabilistic) 
function of recorded values of covari- 
ates. A Bayesian who considers objective 
priors can generally ignore the method 
used to assign treatments only if it is 

complete randomization. 

1. Introduction 

Discussion of the role of randomi- 
zation in the search for effective treat- 
ments is becoming common in the social 
and medical sciences. See for example, 
Campbell and Erlebacher (1570), Gilbert 
(1975) and Gilbert, Light, Hosteller 
(1974). The basic problem concerns as- 
signing human subjects to treatments 
that some suspect are less efficacious 
than other treatments under study. The 
rules of randomization imply that this 
assignment be made by a random mechanism 
and not by the subjects themselves or 
with their consent. Perhaps we can do 
away with randomization and still reach 
valid inferences about the causal effects 
of treatments? 

Bayesian statisticians often claim 
that randomization is irrelevant or at 
least of secondary importance for in- 
ference of any kind. Thus, Savage (1954, 
p.66) suggests that randomization may 
mean little more to a Bayesian than some 
sort of haphazard assignment, and neither 
de Finneti (1975) nor Lindley (1970) even 
list "randomization" or "randomized" in 
their indexes. 

The implication is that a statisti- 
cian faced with the results of a study 
and looking for causal effects of treat- 
ments should not care if the treatments 
were assigned randomly or by some other 
mechanism, since his analysis will simply 
condition on the observed values of the 
dependent variables and covariates in 
either case. This position is incorrect: 
the resultant analyses are, in general, 
not correct Bayesian analyses of the 
data. The reason is that they do not 
condition on the observed value of the 
random variable that indicates how treat- 
ments were assigned. 
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Understanding the process that 
assigned treatments is as important to a 

Bayesian as to a frequentist. Randomi- 
zation stands out as the only commonly 
used method for assigning treatments that 
allows the Bayesian statistician to ignore 
the assignment mechanism when making. 
causal inferences. 

This argument will be developed here. 
The theoretical foundations lie in the 
conceptualization of inference for cau- 
sality as a special case of inference 
when faced with missing data as developed 
in Rubin (1975). Derived issues of 
Bayesian experimental design are men- 
tioned but not explored, as are the 
sampling distribution analogues for the 
conclusions presented. These results 
for causal inference are more complicated 
versions of similar results for descrip- 
tive inference where the utility of 
random sampling is the central issue. 

2. Defining Causal Effect 

Often, discussion of how to estimate 
causal effects seems to be rather con- 
fused, ambiguous, and commonly consists 
of semantic arguments rather than statis- 
tical comparisons. By carefully defining 
causal effect to be the difference be- 
tween an observed value and an unobserved 
value, we hope to avoid this. 

Intuitively, the causal effect of 
one treatment over another for a parti- 
cular unit and an interval of time from 

to t2 is the difference between what 

would have happened at time t2 if the 

unit had been exposed to the first treat- 

ment initiated at t1 and what would have 

happened at t2 if instead the unit had 

been exposed to the second treatment in- 

itiated at t1: "If an hour ago I had 

taken two aspirins instead of just a glass 
of water, my headache would now be gone," 
or "Because an hour ago I took two aspirins 
instead of just a glass of water, my 
headache is now gone." Our definition of 

the causal effect of one treatment versus 
another treatment will reflect this in- 

tuitive meaning (Rubin, 1974). 

We begin with some simple defini- 
tions. These lead to the definition of 
causal effect. 

(.) A unit is an object of study 
(e.g., a person, a rat, a 

block of copper). 



(.) Y is some aspect of units as 
recorded by some particular 
measuring instrument (e.g., the 
score on an achievement test, 
blood pressure in inches of 
mercury as recorded by a spe- 
cific instrument). 

(.) A treatment is a series of 
well- defined actions performed 
on a unit (e.g., the injection 
of one ounce of a drug, expo- 
sure to a special compensatory 
reading program as taught by a 

specially trained teacher). 

(.) A trial is a triple: a unit, 
a time of initiation of treat- 
ment, and a time of recording 
of aspect. 

(.) P is a population of trials 
(generally a hypothetical col- 
lection of those units and 
times in the future to which 
the treatments under study may 
be applied). 

(.) yij is the random variable 

representing the value of the 
aspect Y for the ith trial 
given exposure to the jth 
treatment. 

(.). The causal effect on Y of 
treatment 1 vs. treatment 2 for 
the ith trial is the expectation 
of 

yil yi2, say 
similarly for all other pairs 
of treatments. 

(.) The typical causal effect on Y 
of treatment 1 vs. treatment 2 

for the population P is the 
average value of 

- 
over 

all trials in P, say u1 
- 

similarly for all other pairs 
of treatments. 

Any question that cannot be formu- 
lated in the above framework has no 
"causal" answer. For example, questions 
of the causal effect of sex or race as 
sometimes discussed are totally ambiguous 
with respect to what the treatment and 
its time of initiation mean. Do we mean 
at birth we "dye" the child's skin a 
different color, or at conception we 
"change" all Y chromosomes to be X chromo- 
somes? The point is that we need well - 
defined treatments and times at which we 
are to initiate them before we can dis- 
cuss their causal effects. 
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Sometimes, we can get away with 
rather sloppy definitions of treatments 
if the implied causal effects are gross 
enough. For example, in the statement 
"the sun causes the planets to travel in 
orbits around it" the implication is 
that if one were to destroy or remove the 
sun in any way at any time, the planets 
would no longer travel in their orbits. 
However, in many practical cases, we have 
to be far more precise in order to be 
clear. In some cases, we have to be 
terribly precise in the definitions of 
treatments in order to avoid deceiving 
ourselves, especially when dealing with 
humans who may know they are part of a 

study (e.g., treatments given under 
double -blind conditions are different 
treatments than those given under simple 
conditions because the actions performed 
on the units are different). 

3. A Study of T Treatments 

Consider a study of T treatments. 
We will be very explicit in listing all 
the random variables one might record 
because it is essential that the Bayesian 
conditions on the observhd values of all 
random variables. Figure 1 presents a 

matrix of random variables. This matrix 
is not the usual "units by variables" 
matrix of observed values: in any study 
only a few values of the random variables 
in this matrix are actually recorded. 
Each_row -of the matrix refers to one 
trial in the population P. 

The T columns under Y labelled 1,..., 
T refer to the values of the aspect Y 
given exposure to the various treatments, 
i.e., the random variables yij, as de- 

scribed in Section 2. Similarly, the T 

columns under Z labelled 1,...,T refer to 
the values of another aspect Z (vector - 
valued) given exposure to the various 
treatments. Every characteristic of the 
trials that is recorded after the initia- 
tion of treatments (except Y) is included 
in Z. Because both aspects Y and Z are 
recorded after the initiation of treat- 
ments, each generates T columns in the 
matrix of random variables. The column 
labelled X refers to an aspect (vector - 
valued) that is recorded before the initi- 
ation of treatments and thus generates 
only one column of random variables in 
the matrix. Every characteristic of the 
trials that is recorded before assignment 
of treatments is included in X. 

The columns labelled Y are commonly 
referred to as the dependent variable, 
the column labelled X as the covariate or 
concomitant variable. The columns 
labelled are, for example, dependent 
variables of secondary importance or 



measures of how the treatment was actual- 
ly carried out. The important point is 
that every aspect of the trials that is 
to be recorded is included in this matrix 
of all thé random variables which we call 
U; U is the potentially observable data. 

Within the ith row of the matrix U 
(i.e., the ith trial), at most one of the 

is actually observed, and at most one 

of the zij is actually observed. That 

is, if the ith trial in P was not in- 
eluded in the study, values for 

YiT' 
are not observed. If 

the ith trial was in the study and 
"complete" data were obtained, the value 
of exactly one of is re- 

corded and the value of exactly one of 

zil, 
is recorded; which values are 

recorded depends on which treatment the 
ith trial received. 

The columns labelled M in Figure 
are the same in number as the columns 
labelled U; M is simply an indicator 
random variable: if mij =1, is ob- 

served while if =0, is not ob- 

served. The potentially observable 
random variable in a study of T treat- 
ments is thus (U,M), not U alone. 

Notice that within the structure we 
have developed,the problem of inference 
for causality is equivalent to the prob- 
lem of inference given missing data. 
That is, most of U is missing, as in- 
dicated by M. If all of U were observed 
(which is impossible) standard methods of 
inference could be applied; given the 
presence of missing data, we have to be 
more careful. We have developed this 
structure because it enables us to use 
existing results on inference with miss- 
ing data presented in Rubin (1975). Be- 
fore using these results, we must specify 
the distribution of the random variable 
(U,M). 

4. The Distribution of the Random 
Variables 

Let f 
0 
(U) g0(MIU) be the joint 

probability density function for the 
random variables, where O and are 
vector parameters; fe(U) is the marginal 

density of the potentially observable 
data U, and is the conditional 

density of the indicator M given U. Be- 
cause the causal effects are differences 
of the expectations of the Y columns of 
U, the causal effects are functions of 
and have nothing to do with the assign- 
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ment process g. 
Under f 

0 
the probability that 

the ith trial was exposed to the jth 
treatment is positive for all i,j. This 
is true because if for some trial the 
probability of some treatment is zero, 
then that trial really is not a member of 
the population of trials to which we want 
to generalize the results of the T treat- 
ment study; that is, if it is impossible 
that some trial will ever get some treat- 
ment, then that trial does not belong to 
the population of trials that might be 
exposed to that treatment. Hence, M is a 
non -degenerate random variable taking 
values other than the observed value. 

The following paragraph is an aside 
on model building for fe. It is not 

central to our argument but is relevant 
in Section 7. In many cases, the inter- 
val of time from application of treatment 
to measurement of dependent variable is 
roughly the same length for all trials in 
P; that is, it makes sense to consider 
the effects of treatments at a fixed 
length of time after application. Then, 
each trial is distinguished by the time 
of application and the unit. Often the 
times of application are considered near- 
ly constant or a priori irrelevant to Y 
for all trials in the population P; then 
the population of trials may be considered 
to be identical to the population of units 
to which we want to generalize the results 
-- each trial is a distinct unit. Since 
it is often reasonable to assume that 
given the aspects X,Y,Z, the labelling of 
the units is irrelevant, in many cases 
one is naturally led to assuming that 
under f 

0 
the rows of U are exchangeably 

distributed. Often in fact, the rows of 
U are in addition assumed independent 
under (and thus are i.i.d). The 

justification for this last assumption is 
that if the number of trials in P is ex- 
tremely large, given knowledge of e, 

knowledge of the value of U for one trial 
does not really restrict the values of U 
for any other trial. 

Example: Suppose Y is a measure of health 
and each trial represents a different per- 
son. Also suppose T =2 and that a priori 
all other aspects that are recorded 
are irrelevant to Y. Then an obvious 
choice for would be 

(Yil'Yi2) 

01 
po 

2 2 



Notice that yil and y12 can never both be 

observed. Thus p cannot be estimated, 
e.g., given a prior distribution on p 

that is independent of the prior 

distribution for (p1,p2, the 

posterior distribution of p equals the 
prior distribution of p. In general, 
only the marginal distributions of Y are 
estimable. 

5. Naive Bayesian Inference for 
Causality 

Section 2 defined causal effect; the 
formulation and the explicit inclusion 
of the population P of trials is not 
standard. Section 3 described in detail 
the random variables in a study of T 
treatments; the explicit inclusion of Mis 
not standard. Similarly in Section 4 

when defining the distributions of the 
random variables, the explicit inclusion 
cf g is not standard. The standard 
Bayesian analysis of the data establishes 
a prior distribution for e, say 
proceeds tc find the posterior distribu- 
tion of (and thus of the treatment ef- 
fects which are functions of e) from f0 
and the observed values in U. Variously 
expressed, this naive Bayesian analysis 
for causal effects: 

(.)' Ignores the assignment process 

(.) Ignores the process that causes 
missing data 

(.) Fixes M at its observed value 
without conditioning on this 
value 

(.) Bases inferences for solely 
on f0 

(.) Bases inferences for e solely 
on the marginal likelihood of 
the observed data. 

More specifically, let he the observed 
value of M. The definition of is more 
subtle. Let U = {uij} be defined by: 

= the observed value of uij4(i.e., 

a real number) if mij 1, and = uij 

(i.e., an argument representing a random 
variable that will be integrated out) if 
mij = O. Then naive Bayesian analysis 

lets the posterior distribution of 8 be 
proportional to 

(5.1) dip 
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where the integral is over those random 
variables in U that are not observed 
(i.e., those for which O). 

For instance, ii the example of Section 4, 
if both = Emil and N2 Emit are 

large, the posterior distribution of the 
treatment effect, (p1 - converges 

to ('l - y2) where = the 

average observed value of yij. 

6. Proper Bayesian Analysis for 
Causality 

The problem with the naive Bayesian 
approach to causal inference as outlined 
in Section 5 is that the indicator M is 

a random variable whose value is always 
observed, and thus a proper Bayesian 
analysis must condition on it as well as 
the observed values in U. Conditioning 
on both the observed value of M and the 
observed values in U leads to the joint 
posterior distribution of and 0, which 
is proportional to: 

(6.1) p(0) p(4Ie) Jf0(U)g0(MIU) 

where p(0Ie) is the prior of given 0. 

The questinn of primary interest is: 
when does the naive Bayesian approach 
,(i.e., based on 5.1) produce the correct 
Bayesian answer (i.e., based on 6.1)? 
The answer is: 

If (a) The missing data are miss- 
ing at random (Rubin, 
1975) 

and (b) is a priori independent 
of 0, 

Then all Bavesian inferences for 
based on (5.1) will be correct Bay - 

esian inferences. 

The missing data are missing at random if 

the probability of the observed pattern 

of missing data is the same for all pos- 

sibl values the missing data, i.e. 

g(MlU) does not depend on any uij such 

that = O. If the missing data are 

missing at random and p(01e) = 

equation (6.1) 

p(e) dUJ 
(p(4) 

so and.b are a osteriori inde- 
pendent and the posterior of is pro- 
portional to equation (5.1). These two 

conditions are also necessary for naive 

Bayesian inferences to be correct except 

to rather artificial examples, see 

Rubin (1975). 



If the missing data are not known to 
be missing at random, a proper Bayesian 
analysis has to specify the range of 
possible assignment processes given by 

and the prior distribution In 
practical cases in which the assignment 
process is not known, this specification, 
if taken seriously by the Bayesian 
statistician, should require much thought 
and mental anguish. For instance, in the 
example of Section 3 it might be possi- 
ble that the healthy (with respect to Y) 
patients received treatment i and the 
sick patients received treatment 2; 

clearly such an assignment would alter 
the posterior mean of the causal effect 
of treatment 1 vs. treatment 2. Or it 
might also be possible that the healthy 
patients received treatment 2 and the 
sick patients received treatment 1. 

Since the posterior distribution of the 
causal effect may change substantially as 
the various assignment procedures are 
considered, it is clear that the posterior 
variance of the causal effect may be much 
larger than in the naive Bayesian analy- 
sis. 

More specifically, suppose in this 
example that a priori p =0 and g,(MIU) 

specifies 

yi2 
> 

(01)if y < 
(6.2) (mmi2) 

, 

2 

Thus, the patients with above average 
health under the second (e.g., control) 
treatment receive the first treatment, 
while patients with below average health 
receive the second treatment. Then with 
large samples the posterior distribution 
of - 2) converges to y1 - max(92i) 

rather than l - y2 as when one ignores 

where max(y2j) is the maximum ob- 

served value of 

Practically, the only assignment 
procedures the Bayesian statistician 
need not be concerned with are those that 
are known (possibly probabilistic) func- 
tions of the observed values of the co- 
variates X, such as (probability) samp- 
ling, (restricted) randomization, and 
assignment on the basis of a covariate. 
The fact that the process is known as- 
sures that is independent of e since 
there is no to estimate; the fact that 
the process depends only on values known 
at the time of treatment assignment as- 
sures that the missing data are missing 
at random. 

If the Bayesian statistician does 
not know the assignment process is some 
combination of randomization and assign- 
ment using the known values of a covari- 
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ate, he must be prepared to perform the 
proper Bayesian analysis explicitly 
incorporating the assignment process. 

Notice that there are good and bad 
assignment processes that satisfy con- 
ditions (a) and (b) above, i.e., pro- 
cesses that lead to small and large 
posterior variance and /or are robust or 
not to ranges of particular distributions 
fe. These issues are important for 

Bayesian experimental design but are not 
discussed here since the essential point 
is simply that the assignment process 
generally cannot be ignored. 

7. The Objective Bayesian and Sampling 
Distribution Inferences 

Thus far, our discussion of the 
Bayesian position has been very much from 
the subjective Bayesian point of view in 
the sense that priors were to be found by 
inner contemplation. Many statisticians 
are what might be called objective Bayesi- 
an in that they use the Bayesian frame- 
work but tend to strive for priors that 
lead to posteriors having good sampling 
distribution properties (e.g., a posteri- 
or mean that has small mean squared error) 
or that express ignorance relative to the 
expected information (in the sampling 
distribution sense) available from the 
experiment being contemplated. For ex- 
ample, consider Box and Tiao (1973 p. 46) 
in their discussion of non -informative 
priors and binomial sampling: 

This says that when we sample 
till the number of successes reaches 
a certain value some downward adjust- 
ment of probability is needed rela- 
tive to sampling with fixed n. We 
find this result much less surpris- 
ing than the claim that they ought 
to agree. 

In general we feel that it is 
sensible to choose a non- informative 
prior which expresses ignorance rela- 
tive to information which can be sup- 
plied by a particular experiment. If 
the experiment is changed, then the 
expression of relative ignorance can 
be expected to change correspondingly. 

Thus an objective Bayesian does not 
have a fixed prior found by contemplation 
but rather uses a prior determined from 
the sampling distribution of statistics. 

The naive objective Bayesian analysis 
calculates the sampling distribution of 
these statistics from the density 

(7.1) 
Jfe(U) 



i.e., he implicitly assumes M is the 
only possible value of M. The correct 
sampling distribution of the statistic 
is found from the density 

(7.2) g (M IU) dUÓ 

It is clear that in general, the result- 
ing sampling distributions of a statis- 
tic are not the same under densities 
(7.1) and (7.2) (Rubin, 1975). 

However, as discussed in Section 3, 
it is common to assume is exchange- 
able in the rows of U. Given this 
assumption, it is sensible to restrict 
attention to statistics that for each 
value of are exchangeable in the rows 
of U. The following result is immediate. 

If (a) is exchangeable in 

the rows of U, 

(b) M and U are independently 
distributed, 

and (c) all possible values of 
are permutations of the 
rows of M, 

Then for every statistic S(U,M) 
that is exchangeable in the rows of 
U for each M, the sampling distri- 
bution of S(U,M) ignoring the as- 
signment process (i.e., calculated 
from density (7.1)) is the correct 
sampling distribution of S(U,M) 
(i.e., as calculated from density 
(á.2)). 

Also consider the necessity of the con- 
ditions (b) and (c) above. If condition 
(b) does not hold, in general the den- 
sity (7.1) is not even the correct con - 
ditionál density given that M takes the 
value M (see Rubin, 1975). If condition 
(c) does not hold, then there exists an 
M* such that an exchangeable statistic 
has a different conditional distribution 
given M* than gi.ven'M, and thus, dif- 
ferent distributions under densities 
(7.1) and (7.2). 

Conditions (b) and (c) hold only for 
simple random sampling without replace - 

ment followed by complete randomization. 
Probability sampling and randomization 
within blocks are excluded because the 
assignment depends on recorded variables 
(i.e., sampling weights and /cr block in- 
dicators). Hence, not surprisingly, an 
objective prior for a completely rando- 
mized experiment is not necessarily the 
same as an objective prior for a rando- 
mized blocks experiment. 
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This raises the issue of what are 
good objective priors within the experi- 
mental design framework. This issue 
appears to be interesting but is not 
explored here since the point is simply 
that to an objective Bayesian, the only 
assignment process that allows him to 
ignore the assignment process when cal- 
culating objective priors is simple 
random sampling followed by complete 
randomization, and even this holds only 
in cases in which is exchangeable in 
the rows of U. 

8. Some Verse 

The points of this paper may be 
summarized fairly simply in the following 
doggerel which is given only for its sim- 
plicity of presentation and not for its 
literary merit. 

There eyists no causation without 
manipulation; 

There exists no generalization 
without a population; 

There does es :ist experimentation 
without randomization, 

But 

The Bayesian must consider the mani- 
pulation in order to obtain the 
proper generalization. 
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